Vascular remodeling and ET-1 expression in rat strains with different responses to chronic hypoxia.
نویسندگان
چکیده
Chronic hypoxia leads to a greater degree of pulmonary hypertension in the Wistar-Kyoto (WKY) rat than in the Fischer 344 (F-344) rat. We questioned whether this difference is associated with baseline differences in pulmonary artery anatomy, a greater degree of hypoxia-induced pulmonary vascular remodeling in the WKY rat, and/or differences in expression of endothelin (ET)-1. Male F-344 and WKY rats were maintained in normoxia or normobaric hypoxia for 21 days. Morphometry revealed that baseline pulmonary artery anatomy was similar in the two strains. However, during chronic hypoxia, the WKY rats developed a greater degree of muscularization of small pulmonary arteries. Baseline plasma and lung immunoreactive ET-1 levels were similar in the WKY and F-344 rats and increased significantly during hypoxia in the WKY rats. Northern analysis demonstrated increased lung preproET-1 mRNA during hypoxia in both strains, with a greater increase in WKY rats. Immunostaining demonstrated increased ET-1 in bronchial epithelium and peripheral pulmonary arteries during hypoxia, although to a greater degree in the WKY rats. We conclude that the WKY strain demonstrates increased susceptibility to hypoxia-induced pulmonary vascular remodeling compared with the F-344 strain and that increased lung and circulating ET-1 levels during hypoxia may partly explain this difference.
منابع مشابه
ALUNG May 22/5
Aguirre, J. I., N. W. Morrell, L. Long, P. Clift, P. D. Upton, J. M. Polak, and M. R. Wilkins. Vascular remodeling and ET-1 expression in rat strains with different responses to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 278: L981–L987, 2000.—Chronic hypoxia leads to a greater degree of pulmonary hypertension in the WistarKyoto (WKY) rat than in the Fischer 344 (F-344) rat. We question...
متن کاملEffect of thoracic epidural blockade on hypoxia-induced pulmonary arterial hypertension in rats
Objective(s): The present study was aimed to investigate the influence of thoracic epidural blockade on hypoxia-induced pulmonary hypertension in rats. Materials and Methods: Forty eight Wistar rats were randomly divided into 4 equal groups, named normoxia hypoxia hypoxia/ ropivacaine and hypoxia/saline. Animals were placed in a hypoxia chamber and instrumented with epidural catheters at the t...
متن کاملEffects of ET-A receptor blockade on eNOS gene expression in chronic hypoxic rat lungs.
We tested the hypothesis that pulmonary endothelial nitric oxide synthase (eNOS) gene expression is primarily regulated by hemodynamic factors and is thus increased in rats with chronic hypoxic pulmonary hypertension. Furthermore, we examined the role of endothelin (ET)-1 in this regulatory process, since ET-1 is able to induce eNOS via activation of the ET-B receptor. Therefore, chronic hypoxi...
متن کاملThe NO donor molsidomine reduces endothelin-1 gene expression in chronic hypoxic rat lungs.
We investigated the effects of the nitric oxide (NO) donor molsidomine and the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) on pulmonary endothelin (ET)-1 gene expression and ET-1 plasma levels in chronic hypoxic rats. Two and four weeks of hypoxia (10% O2) significantly increased right ventricular systolic pressure, the medial cross-sectional vascular wall area of t...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 278 5 شماره
صفحات -
تاریخ انتشار 2000